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Abstract. Our investigation of the dynamics of two-quantum states within Davydov ID2) 
dynamics reveals remarkable differences from one-quantum dynamics. Soliton formation 
and pinning starts from smaller values of the non-linearity parameter X. From X = 30 pN 
propagating solitons from X = 62 pN pinned solitons are observed if both quanta are on the 
same endof the chainin theinitialstate. In  the caseofsolitoncollinions, lhesolitonspenetrate 
each other unperturbed for small X, but fuse to a pinned two-quantum soliton for large X .  
Both one- and two-quantum states are very sensitive to diagonal disorder in the Hamiltonian. 
In ID,)nnsalz states, the soliton is found to appear for larger non-linearity but its sensitivity 
to diagonal disorder is essentially unchanged. 

1. Introduction 

Since their discovery, solitons have been used for the explanation of a wide variety of 
physical and chemical phenomena. Solitary solutions, i.e. non-dispersive or slowly 
dispersive wavepackets, can occur only in systems with non-linear forces. The import- 
anceofsuchnon-linearforcesisobvious,e.g. fromthefact that a harmoniclattice would 
have an infinite heat conductivity [l]. The first observation of a solitary wavepacket in 
water was reported by Scott-Russel [2]. Some examples of the applications of soliton 
concepts are the dynamics of ferro- and antiferromagnetic materials [3,4], rotation 
around carbon-carbon bonds in polyethylene [ 5 ] ,  phase changes in solids [6,7], the 
dynamics of the sugar-phosphate backbone [a] or the nucleotide bases [9,10] in deoxy- 
ribonucleic acid (DNA) and the spin-less charge transport in tram-polyacetylene [ll]. 

An important biological problem is the mechanism of energy transfer and storage in 
proteins[l2]. FollowingDavydov’sidea[13],onecanassumethatenergyfromadenosine 
triphosphate (ATP) hydrolysis is stored in the C==O stretching mode (amide I) of a 
polypeptide chain. Owing to the coupling of the mode to acoustic phonons in the lattice, 
non-liear forces appear, which can localize the excitation. Because of the coupling 
between the amide-I oscillators, this localized wavepacket is able to propagate [13] as a 
solitary wave. Since the complex structure of proteins makes measurements quite 
difficult, direct experimental evidence for the existence of such solitons is missing. 
However, in acetanilide (N-phenylacetamide) crystals, a new band appearing in low- 
temperature infrared and Raman spectra could only he explained by a model similar to 
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the concept of Davydov solitons but involving coupling to optical phonons [14]. 
However, there is evidence that the soliton in acetanilide is pinned. 

Therefore, in proteins up to now one has had to perform computer experiments on 
the Davydov solitons, incorporating as many details of the physical nature of proteins 
as possible. These computer experiments can answer the question whether or not the 
proposed mechanism can function under 'realistic' conditions. Two very important 
aspects of the real situation that need to be incorporated into the model are the aperi- 
odicity of proteins (20 different natural amino acids exist) and temperature (=300 K). 
In a preceding paper we have reported OUT study on aperiodicity effects on Davydov 
solitons [15]. We found the soliton to be stable over a rather wide range of aperiodicity 
in the parametersof themodel Hamiltonian. However, the important effects of diagonal 
disorder have, at least to our knowledge, not been studied up to now. Therefore, in this 
paper, we report on our work concerning diagonal disorder in the model Hamiltonian. 
Since ATP hydrolysis provides approximately twice the energy of an amide-1 quantum 
[16], we alsostudy thedynamicsof two-quantumstates insomedetail. Toour knowledge, 
there exists no detailed investigation on the parameter dependence of the dynamics of 
two-quantum states, besides the study by Scott [16], where the norm of the state takes 
the value 2. In our study we use the newly derived (171 equations of motion for several- 
quantum states. These equations have been applied, to our knowledge, only in simu- 
lations at T =  300K for special parameter values [B]. Soliton collisions have been 
studied by Bolterauer 1191, but also only for one set of parameter values. Our results 
on temperature effects on soliton dynamics, which are more detailed than in our pre- 
vious paper [15.20]. will be published elsewhere [21). In that paper we will also com- 
pare in detail our results with those of other models for the inclusion of temperature 
[18,22-291. 

2. Method 

The Hamiltonian used for this study is of the simple form suggested by Davydov [13] 
but extended to allow for diagonal disorder (the inclusion of disorder in all parameters 
is reviewed in the appendix): 

Note that, in contrast to most applications in the literature, we use the asymmetric 
interaction form of the Hamiltonian since the excitation energy of an amide-I oscillator 
is influenced far more by the hydrogen bond in which the C=O group participates 
than by the neighbouring one. Thus we use the term XrC:d,(ij, - c j n - , )  instead of 
Xii&n(dn+l - Be-,) as the oscillator-lattice coupling. More sophisticated forms of A, 
incorporating more details of the protein structure, lead to the same qualitative results 

(a.) are the usual boson creation (annihilation) operators [31] 
for the amide-I oscillators at sites n (see figure 1). The energy of an isolated vibrational 
quantum (CO stretch) can be deduced from infrared spectra ( E ,  = 0.205 eV) [32]. E, 
represents the diagonal disorder due to different amino acid side groups and local 
geometric distortions due to these groups in proteins. The dipole-dipole coupling 

P O I .  
In equation (l) ,  
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, / 
Figure 1. Schematicpictureofa hydrogen-bonded I 

r;-I n P+l channel in a protein. 

between neighbouring amide-I oscillators is J = 0.967 meV [32]. The spring constant of 
the hydrogen bonds is usually assumed to be W = 13 N m-*, a value measured in 
crystalline formamide [33]. However, since the peptide units in proteins are covalently 
bound in the backbone perpendicular to the spines (see figure I), we expect W to be 
considerably larger than in formamide, where free molecules are vibrating 1151. Also in 
equation (l) ,pn is the momentum and Q,, the position operator of unit n. The average 
massMistakenasthatofmyosin(114mP) [32]. TheenergyoftheCOstretchingvibration 
in CO---HN hydrogen bonds is a function of the length r of the hydrogen bond ( E  = 
E ,  + Xr) [34]. The experimental value for X is 62 pN [32]. Ab initio Hartree-Fock 
calculations on formamide dimers usually lead to X = 30-50 pN [35,36]. However, one 
has to keep in mind that the experimental value of X was obtained from the amide-I 
energies in crystals of materials containing CO---HN hydrogen bridges of different 
lengths. Thus the effectsof the different side groups on the amide-I energy are probably 
also implicitly included in this value and not just the effect of the different hydrogen 
bond lengths. 

For the solution of the time-dependent Schrodinger equation 

(2) 
a 

HIY) = ifi; I w )  
we use the displaced oscillator state ansafz of Davydov [ 131 extended to states containing 
Q quanta [17]: 

In this ansafz, qm(t) is the expectation value of the position operator andp,(f) that of 
the momentum operator of unit m, 10) is the vacuum state and la;(t)[* is the probability 
of finding Q amide-I vibrational quanta at site n ,  provided that Xn1a;\' = 1. 

In this so-called 103 ansatz, no phase mixing ('dressing') between phonons and 
excitons occurs. From (3), equations of motion can be obtained either by quantum- 
mechanical methods (QM) [17.37] or by using the expectation value of H in state (3) as 
the classical Hamiltonian function (HM) [13.30]. In Davydov's more sophisticated 10,) 
unsatz [13], full phase mixing between excitations and phonons occurs. However, using 
this ansafz HM results in equations different from those obtained using the time-depen- 
dent variational principle 1381 or other quantum-mechanical methods [39]. 

In their recent work Brown et a1 [40-42] have shown that, in the transportless case 
(J = 0), ansatz (3) leads to the correct time evolution of q,,(t) but to an incorrect phonon 
energy. Note that for J = 0 the time-dependent Schrddinger equation can be solved 
exactly[40]. Incaseofthe IDJansarz [13] togetherwitbtbeequationsofmotionresulting 
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from HM, it is sbown [40] that even q,(t) is incorrect in the transportless case. However, 
optimized equations of motion for IDl) have been derived [38,39], which reproduce the 
exact solution in the J = 0 limit. Their numerical application to aperiodic chains is 
described. 

Subsequently Brown et a1 [43] derived a theory based on an ansarz that is a special 
case of the ID,) ansarz and contains ID2) as one limiting case. They argue that in IDl) 
overdressing might occur, and they introduce a dressing factor in their state, which is 
optimized variationally. Since ID,)resultscan be mapped intothe partialdressingtheory 
[43], we decided to use the ID2) ansm state for our simulations. However, some 
numerical simulations using the Id) state ansari are described below. 

After a suitable gauge transformation 

a:, =a, exp(-i&t/h) (4) 

ihu, = Enan -J(a,+l + a n - l )  + X(q ,  - q.-,)a,, ( 5 4  

P m  = W q n + i  - 2 q n  + 4.-1) + QX(Ian+i12 - Ian12) (5b) 

4. = P J M .  (54 

one obtains the equations of motion [17] as 

The complex equation (sa) was solved as a system of two coupled equations for the 
real and imaginary parts of a,. The system of units eV for energy, A for length and ps 
for time proved to be suitable for numerical solution of (5). We applied a Runge-Kutta 
method of fourth order [44,45]. As we have shown [46] for two cases where equation 
(5) can be solved analytically, this algorithm works extremely well for equations of the 
type occurring here. We used a time step of T = 0.005 ps and a chain length of 200 units. 
In this case the total energy is typically conserved up to better than 0.01% and the norm 
to0.4 ppm (partspermillion). Weusedopenchainswith fixedendsassuggestedin [46]. 

3. Results and discussion 

3.1. Two-quantum dynamics 

Inour first seriesofcomputerexperimentsweuseda,(O) = (6,,,., + 6,,,J/d2asinitial 
excitation, i.e. we put one vibrational quantum on each of the two sites close to the fixed 
chain end (n = 200). and vaned the coupling constant X. If we put the two quanta 
initially on one site (199) the results do not change. In the case of one-quantum states, 
soliton formation is observed for X > 40 pN, and for X > 80 pN pinning of the soliton 
occurs [E, 301. In figure 2(a) we show the time evolution of la,(t)I2 for two-quantum 
states for different values of X .  Obviously for X S 20 pN dispersive behaviour is 
obtained. However, already for X = 30 pN, in contrast to the one-quantum state, a 
solitonisformed that propagateswith avelocityof 50.93 km s-] through thechain. The 
solitary character of the wave is confirmed by the existence of the accompanying lattice 
distortion seen in figure 2(b), where we show D, = (4. - q.-J2. For X = 40pN the 
velocity is reduced to 0.76 km SKI, and starting with X = 62 pN the soliton is pinned. 
Thus in the hvo-quantum case the window for travelling solitons is shifted to smaller 
values of X. 

If we put the two quanta initially on sites 100 and 101 in the middle of the chain, we 
obtain a similar behaiiour as observed in the one-quantum case. Up to X = 50pN the 
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excitation disperses, and from X= 62pN a pinned soliton is formed. In the cor- 
responding one-quantum case the behaviow is dispersive forX = 62 pN. Thus also here 
the threshold for soliton formation is at smaller X values than in the one-quantum case. 
(Figures corresponding to results described but not shown here can be obtained from 
the author upon request.) 

One should note that an excitation in the middle of the chain must show a different 
timeevolution than anexcitation at the chainendowingtosymmetry. Fromanexcitation 
in the middle of the chain only three different time evolutions are possible by symmetry; 
(i) dispersive behaviour, (ii) two identical solitons travelling in opposite directions, or 
(iii) a pinned soliton, if the excitation is symmetric with respect to the centre of the chain 
as in our case. An excitation at the chain end can evolve without such symmetry 
restrictions. Thus the twocasesarephysicallydifferent. Since one may expect excitations 
at the chain ends [13,16] to be more probable as a result of ATP hydrolysis, they seem to 
be more important. In our simulations we found no difference in the results if the 
terminal molecules are fixed as used here, or if they are allowed to move freely. In a 
survey of the ( J .  W, A') parameter space, we could find no case of travelling solitons for 
excitation in the centre of the chain, and only cases (i) and (iii) are realized. 

+ 
6199.n)/fi. Thus at each chain end a one-quantum excitation starts to evolve, and 
therefore the threshold for soliton formation occurs around X = 40 pN as for one- 
quantum states. Note that, owing to the fact that we use an even number of units, the 
symmetry with respect to the centre of the chain does not hold completely because this 
centre is between sites 100 and 101, while our variables are only defined at the sites not 
between them. Thus the interaction of the solitons occurs not in the centre of the chain. 
Also the asymmetric interaction used might lead to symmetry breaking. For X = 30 pN 
(figure 3(a) )  the behaviour is dispersive. At X = 40 pN (figure 3(b)) and X = 50 pN 
(figure 3(c)) the solitons pass each other without perturbation. At X = 62 pN (figure 
3(d)) one of the two solitons propagates further with a larger amplitude while the other 
one is diminished and disperses after the collision. The two one-quantum solitons fuse 
partially. At X = 70 pN (figure 3(e)) the fusion of two one-quantum solitons to a pinned 
two-quantumsolitonisalmostcomplete,andatX = 75 pN(figure3(f))thefusionoccurs 
fully, besides a small dispersing tail. A similar fusion effect of two solitons was reported 
earlier by Bolterauer [19]; however, hegave noparameter valuesin hispaper. Obviously 
the formation of a soliton containing more than one quantum needs a finite time, and 
thus larger values ofX(smal1er soliton velocities) favour the fusion processin collisions. 

Finally we studied soliton collisions. The initial excitation was a.(O) = 

3.2. Diagonal disorder 

3.2.1. )D2) dynamics. First we want to concentrate on the case where only the central 
site of the chain is disordered, i.e. E. = A6,,,m. In our first series of calculations a one- 
quantum soliton is started from the terminal site 199 and X = 62 pN. For A = -2 meV 
the soliton is reflected from the impurity. In the lattice dynamics the distortion 
accompanying the soliton shows in all cases the same behaviour as ia.(t)l* while the 
shock waves are not influenced by the impurity. 

In case of A = -1 meV the dynamics are more complicated. First of all the soliton 
is destroyed at the impurity site and equal fractions of the excitation are reflected and 
transmitted, but in a dispersive manner. A small part of the excitation is trapped at the 
impurity site. For A = -0.5 meV the soliton is diminished in amplitude but able to pass 
the impurity. For A-values of the same absolute values but opposite signs the dynamics 
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are the same as described above. Obviously the soliton is rather sensitive to a diagonal 
impurity. This might be due to the fact that via the t ems  

in equation (5a) a diagonal impurity interferes directly with the non-linear coupling that 
makes the solitary behaviour of the wave possible. Since the coupling term is rather 
small (roughly of order 1-2 meV), a disorder A = rt0.5 meV already interferes with the 
soliton. 

From this argument one may expect that for X = 50 pN the soliton should be even 
more sensitive to the value of A. However, for smaller X the velocity of the soliton is 
larger and thus the interaction time of the soliton with the impurity is decreased. Both 
effects compete with each other, and we found that the soliton is slightly more stable in 
this case. For two-quantum states we used X = 50 pN since a two-quantum soliton is 
already pinned for X = 62 pN. Two-quantum solitons have a smaller velocity than their 
one-quantum counterparts. Thus we expect that they are more sensitive to the impurity. 
As figure 4 shows, this is indeed the case. Only for A = -0.2meV (figure 4(a)) is 
the soliton able to pass the impurity. For A = -0.4 meV (figure 4(b)) considerable 
dispersion occurs. At A = -0.6 meV (figure 4(c)) the dispersion is enhanced, and at 
A = -0.8meV(figure4(d)) thesolitonismoreorlessdestroyed,whileforA = -1 meV 
(figure 4(e)) reflection starts. At A = -2 meV (figure 4(f)) total reflection occurs. 

If the coupling is lowered to X = 40 pN in the two-quantum case, the acceleration of 
the soliton dominates the dynamics. For A = -0.2 and -0.5 meV the soliton is able to 
pass the impurity. Only at A = -1 meV does dispersion occur and the soliton is 
destroyed, while for A = -2 meV total reflection occurs. Thus two-quantum solitons 
for X = 40 pN behave very similarly to one-quantum solitons at X = 62 pN. 

In the next step of our investigations we used a random sequence for E, to simulate 
aperiodicity, where E, = @"A and the ru, are random numbers with la,l< 1. We per- 
formed simulations for X =  62 pN and one-quantum solitons. Our basic observation is 
that diagonal aperiodicity and temperature act strikingly similarly in the sense that the 
la,12 plots are very similar to that of [15] showing temperature effects. In both the A = 
0.1 meV case and the T = 10 K case in a perfect chain, the soliton passes along the chain 
with only small dispersion. In the case A = 0.2 meV and T = 40 K from [15], the soliton 
disperses rather fast. For A = 1 meV and T =  300 K, the excitation remains for a long 
time at the chain end and disperses very slowly into the chain. Finally, for A = 5 meV 
pinning occurs, which resembles the T = 300 K case from [15] with larger coupling 
constant. If instead of equation (4) we use 

a; = in exp[ - (i/fi)(En + Eo)] (7) 

as transformation, we obtain instead of equation (Sa) the following equation of motion: 

i&" = - J[Z.+~ exp(-(i/fi)(E.+, - E & )  

+ Ll exp((i/fi)(E. - &-l)t)l + X(q ,  - qn-l)%. (8) 
Thus diagonal disorder in essence acts as a time- and site-dependent phase in the dipole- 
dipole couplingl. As shown in [21] the effects of temperature can be cast mathematically 
into the same form. This explains the similarity described above qualitatively. A 
reduction of the coupling to X = 50 pN results in no drastic changes. Again for A = 
0.1 meV a soliton is observed, while for A = 0.2 meV it disperses, and for still larger 
disorder (A = 0.5 meV) a tendency to pinning occurs. The two-quantum soliton ( X  = 
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FigureS. Time (:Ips) evolutionof In,(:)(’forX = 50 pN, a two-quantumsoliton anddiagonal 
disorder (E .  = p”; 1fl.I C 1, 0. random): ((I) A = 0.08meV; (b)  A = 0.10meV; (c )  A = 
0.50meV. 

SOpN) turns out to be more unstable against disorder, as figure 5 shows. For A = 
0.08 meV (figure S(a)) we observe a soliton, while for A = 0.1 meV (figure S(b)) 
dispersion already occurs. At A = 0.5 meV (figure 5(c)) again the tendency of pinning 
shows up. This reduced stability of the two-quantum soliton may again be attributed to 
its smaller velocity compared to that in the one-quantum case. Each impurity thus bas 
more time to affect the soliton. Owing to  the larger velocity in the case of smaller 
coupling, the stability of the two-quantum soliton increases if X = 40 pN. The soliton is 
stable from A = 0.08 to  0.12 meV. At A = 0.14meV, fast dispersion is observed as 
expected. 
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3.2.2. Zmprooedansatrstates. The ID1)amarrstateasintroducedbyDavydov [22]reads 
as 

\ P n ( t ) )  exP[-Sn(t)llo)ph = exP ( - (bikbk - bnkb:)) lo)pb. (10) 

This ansafz allows dynamical phase mixing between phonons and excitons. Thus the 
quantum nature of the lattice is more pronounced than in the IDz) state. Davydov's 
theory [22] results in equations of motion that do not reproduce the exact dynamics in 
the transportless case (J = 0). Recently (38,391 optimized equations of motion have 
been derived that reproduce these exact dynamics. Including disorder, they read as 

k 

i?%, = E .  - 4 ih (bnkb:k - bzkbnk) 
k 

4- x h w k [ 2 B n k  Re(bnk) 4- \ b d 2 1 )  an 

( 
k 

- JnDn,n+lan+l - Jn-1Dn.n-1an-1. (11) 

a. = a ,  exp(-iE,,t/h) (12) 
, Here 

and 

D,,, =exp ( k  - lx[ lb .k-b. .r12+21m(bz,xbni)])-  (13) 

Further 

ihbnk = fiwk(bnk f Bnk) - J,,Dn,n+i(bn+i,k - b d a n + l / a n  

- Jn-,Dx.,-i(bn-i,k - b&,-i/a,. (14) 
To avoid numerical difficulties due to the denominators a,, in (14) we use the same initial 
conditions as in [39]. To check our program we have used the same initial and boundary 
conditions as in [39]. Our results for X = 174 pN are identical to those of figure 6 in [39]. 
Also the other figures of [39] could be reproduced. 

We have used a chain of 50 units, obtained the normal modes U by numerical 
diagonalization of V (see appendix), and we did not populate the translational mode. 
We used M = 114m,, W = 13 N m-l, J = 0.967 meV. For X = 142 pN the excitation is 
still dispersive. Only from X =  174 pN is a travelling soli.ion observed, while between 
200and 300 pN pinningoccursin agreement with [39], although the boundary conditions 
are slightly different. We perfonned a survey of the parameter subspace [W, x] for 
different values of J. These are J = 0.6,0.967 and 1.4 meV. We found that travelling 
solitons exist only for W < 50 N m-', in contrast to IDz) dynamics. Also the solitons 
occur for much larger values of X. The threshold value of Xincreases for increasing J as 
in ID2) dynamics. One cannot expect soliton formation below X = 120 pN within IDl) 
dynamics.Thisvalue iswell abovealIestimatesofXforproteins(=3MO pN). However, 
there exists an experimental estimate for the Xvalue of the N-H vibration as large as 
339 pN [36]. 

For N = 5O(X = 174 pN) and a time step of 0.01 ps in our fourth-order Runge-Kutta 
method, within 12 ps the error in total energy is less than 0.011 meV, the norm error less 
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than 0.5 X We have calculated the influence of a diagonal impurity E. = A6,,, on 
a soliton ( X  = 174 pN). Up to A = 0.2 meV the soliton is not much affected by the 
impurity, while from A = 0.3 meV the trapped parts of the excitation are already quite 
large. Within a random sequence E, = cnA (In.l< 1, a;, random numbers), already at 
A = 0.15 meV the soliton is slowly dispersive and full dispersion occurs from A = 
0.20 meV. Thus the sensitivity of the soliton against diagonal disorder is comparable to 
IDz) models. In the case of a random distribution of masses, the natural variation of 
amino acid masses does not affect the soliton. 

Brown et ul [43] have introduced a modified unsatz state, which they call the Id) 
state. The Id) states are a subset of the generalized IDl) states introduced by Davydov 
[22].  In this state, a fixed degree of phase mixing is incorporated: 

Here the operators are defined as 

hk = 6, exp ( 6  (B,k6: - 816,)) 

6 ;  = bk + 6 

k 

B,kb:b, 
n 

where in an aperiodic chain (see appendix) 

and 6 is the dressing factor. In (18). wk are the eigenfrequencies of the decoupled lattice 
and U is the matrix containing its normal modes. The coefficients in the ID) state are 
related to those occurring in IDl) by 

The dressing factor 6 can be obtained by minimization of the averaged total energy 1431. 
Using equation (4.12) of [43] we have computed S for T =  0 K in a periodic chain. 
For 0.8 meV S J 1.2 meV, 6 varies between 0.76 and 0.97, where S decreases with 
increasing J .  With increasing non-linearity, 6 also increases; however, the larger W the 
smaller is the variationin 6, and thelarger itsvalue. Thusfor increasingJanddecreasing 
X and W, the Id) state approaches the IDz) state (6 = 0); while for decreasing J and 
increasingXand W ,  1d)approaches the small-polaron limit (6 = 1). ForJ = 0.967 meV 
and W = 10 N m-', S varies by -0.15 in the range 0 =z X S  200pN. For X = 0, S = 
0.796 is obtained, and for X = 200 pN, 6 = 0.944. For X = 60 pN, we obtain 6 = 0.81, 
in agreement with Brown ern! [43]. Thus for the usual valuesof the parameters, the id) 
state is closer to the small-polaron limit than to the ID2) state. 

Brown eta1[43] derived the equationsofmotionfor the ]@state with the helpof the 
time-dependent variational principle. 
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For numerical simulations a suitably small time step r is introduced. During this time 
step (or half of it as in the Runge-Kutta method), the integrand is linearly interpolated. 
Thus at the time lr we obtain 

b ; ( ~ )  = A ~  e+"'" + c,(I) - iok  e-iudr 

Ak =b;(O) - 6 ~ L 3 ~ 1 ~ ; ( 0 ) ) ~  

B.,D,,(I) 
n 

n 

Ck(0 = 6 x B,,laA(lr)I2 

D.k(O) = 0 

Doh(I) = D d J -  1) -6 br[Enk(I) + E n d -  111 
E,k([)  = ei"gr Ia;(lt)l*. 

For T = 0 K the initial phonon data are b;(O) = 0. After computation of a,(lr) and 
b;(la), the time derivative of a ; @ )  can be obtained by: 

ifici;(Zr) = (E ,  + E, - 6(2 - d)E,]aL(ft) - j n a ; + l ( f c )  

- ya-laA-l( l t )  + 2 x  hokBnk Re(b;(lr))a;(lr) 
k 

+ 26(1- 6) hokB~kB,*la6(Zt)12a:,(lr). (22) 
m.h 

Here E. represents the disorder of the on-site oscillator energy (Eu + E"), E,, is given by 

E. = BLhw, (23) 
k 

which is the small-polaron binding energy [43], and the scaled oscillator coupling is 

j n  = J ,  exp ( - 462 E ( E ,  -  EL+^,^)^). (24) 
k 

From ciL(lr), aA((l+ 1)r) can be computed. In practice, a gauge transformation is 
performed 

a; = a: exp( -i E&) (U) 
which removes the term containing Eo and thus the rapidly oscillating part of a;. 

Typically we used r = 0.01 ps for our simulations within a Runge-Kutta method 
correct up to fourth order [21, 451. In this case (M = 114m,, W = 13 N m-', J = 
0.967 meV, X = 180 pN) for a periodic chain of 50 units, within 12 ps the error in total 
energy is less than 0.015 meV (=0.004% E,) and the norm is conserved to better than 
0.36 X Here 6 = 0.9016. The translational mode was kept unpopulated. Our 
calculations have been performed with the same parameters as for IDl) ( M  = 114q,, 
W = 13 N m-', J = 0.967 meV, X = 60, 100, 140, 180, 220, 260 pN). First of all, in 
contrast to lD2) or IDl) dynamics, no real moving soliton shows up. Only from X = 
180 pN can one speak of a slowly dispersive solitary wave. For X = 260 pN a pinned 
soliton is observed. For the jfi) state the parameter space that allows soliton formation 
isverysmallandat ratherlargevaluesofX.Thusifthe1B)stateisabetterapproximation 
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to the exact solution than IDz) or ID,), one has to conclude that the Davydov soliton 
cannot exist in proteins at T =  OK. However, the Id) states and the new equations 
of motion for IDI) are both derived with the time-dependent variational principle. 
Therefore, the IDl) dynamics should be a better approximation to the exact solution 
than the Id) states. 

We have also calculated here soliton dynamics in disordered chains up to 70 ps in the 
case W = 13 N m-', M = 114m,, J = 0.967 meV and X =240 N. The time step was 
chosen to be z = 5 fs. In a typical simulation the energy error was less than 0.05 meV 
and the norm error less than0.3 X In the periodic chain in the case of 1d)dynamics 
we deal only with slowly dispersive solitary waves rather than with travelling solitons 
alsoforX=240pN.ForanisolatedimpurityEn = A&,wefindthatforA = 0.1meV 
the wave is able to pass the impurity, while it is trapped for A = 0.2 meV. In the case of 
random sequences E, = amA (/&"I G 1, random) for A = 0.05 meV besides a con- 
siderable disturbance the wave is still travelling, while for A = 0.10 meV it is destroyed. 
Finally, in the case of a random sequence of masses (between glycine and tryptophan) 
the excitation remains trapped for roughly 20 ps and disperses later on. Thus solitary 
waves in the Id) model are far more sensitive to disorder than solitons in ID2) or 10,) 
theory. 

4. Conclusions 

We studied two-quantum dynamics in the Davydov model system, In perfect chains we 
observed that the window for formation of propagating solitons is shifted to smaller 
values of the coupling X compared with the one-quantum case. In the case of soliton 
collisions we observe fusion of two one-quantum solitons to one pinned two-quantum 
soliton for high values of X ( X >  62pN). As Bolterauer [19] pointed out, this may 
indicate instability of two-quantum solitons with respect to one-quantum solitons, 
because of time reversal symmetry. 

Both types of solitons are extremely unstable to diagonal disorder. This is due to the 
fact that diagonal disorder interferes directly with the coupling term to the lattice 
phonons in the equations of motion. Here, owing to their smaller velocities, two- 
quantum solitons are more sensitive to disorder than one-quantum solitons. Since the 
mathematical effects of diagonal disorder and temperature [21] can be cast into the 
same form, the results are quite similar: increasing disorder corresponds to increasing 
temperature; however, diagonal disorder effects are more dramatic than temperature 
effects. 

In the case of the IDl) ansatz state, which allows the quantum nature of the lattice to 
play a greater role, we found that solitons appear at much larger values of the coupling 
constant X than all estimates of Xfor proteins. In the case of the partial dressing state 
Id), no travelling solitons occur between X = 0 and 300 pN. However, IDl) should be 
superior to Id) since it is more flexible, and the equations of motion for both states can 
he derived by the time-dependent variational principle. The sensitivity of solitons and 
solitary waves against diagonal disorder is comparable in all three ansalz states. 

The results reported here for soliton-impurity interactions agree qualitatively with 
results published on the same problem in different systems. In one paper the case of 
trans-polyacetylene with site and bond impurities using the Hiickel-type Su-Schrieffer- 
Heeger Hamiltonian was studied [47]. In another work the dynamics of point masses 
interacting via cubic, quartic and Morse potentials were investigated [48]. In both 
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studies, reflection, trapping and transmission together with partial reflection of solitons 
was observed depending on the strength of the impurity and the non-linearity. Quali- 
tatively the same effects were observed here for Davydov solitons. However, quan- 
titative comparisons cannot be made owing to the differences in the physical systems 
studied. 
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Appendix. Inelusion of disorder 

We start with the classical equations of motion for a chain of N harmonically coupled 
point masses (MJ: 

Mq=-Wq M., = M . 6 ,  

w, = [ W d -  L) + Wn-1(1 - s,I)ls,, ('41) 
- w n ( 1  - 6 n N ) 6 m . n + l  - Wn-I(l - 6 n l ) 6 m , n - l  

where q,, is the displacement of unit n and W. is the force constant between units n and 
n + 1. Herep, = Mnqnare the momenta of the units. Using the transformation 

d = MWq p =: MI/Zd (-42) 

d =  -Vd.  (-43) 

(A4) 

V = M-lnWM-l/Z 

we obtain 

The Hamiltonian function is transformed as 

2H,, =p+M- 'p  + q+Wq = d+d  + d+Vd. 

Equation (A3) can be further simplified by transformation to normal modes U, with 
d(/)  = ZkUk(U+d(0)), exp(iokt) such that 

u+vu = w* = Ok6W. (A5) 

2HPh = b'b t b'w'b (A6) 

2H,, = Aw,(c;c, + a;ak) .  ('47) 

V can be numerically diagonalized and U chosen to be real. With b = U+d we obtain 

and with b = L'/zw-l/za, c = w-+j 

k 

Now creation (6:) and annihilation (hk) operators are introduced in the usual way to 
obtain the phonon part of the Hamiltonian operator 

+ (i/d2)(6, + 6:) ck + - (i/d2)(6, - 6:) (A81 
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which leads to 

Ijph = 7 fiwk(6:6, + 4). 
Thus finally 

@ n  = [fi/(2Mnwk)]'"ud(6k 6:) 
k 

p. = - i E [ B M , W ~ / ~ ] ~ ~ * U , , ( ~ ,  - 6;). 
Introducing (A10) into the full Hamiltonian, we obtain 

k 

ri= X (E,,+E.)a;a, - XJ, , (S ;S , , ,  + s ; + ~ s , )  
n n 

f i W , ( 6 : 6 k + i ) + c  f i W k B n k ( 6 k  +6:)b,ia, 
k n.k 

with 
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